Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
Lung ; 201(2): 149-157, 2023 04.
Article in English | MEDLINE | ID: covidwho-2294688

ABSTRACT

INTRODUCTION: Dyspnea is a common symptom in survivors of severe COVID-19 pneumonia. While frequently employed in hospital settings, the use of point-of-care ultrasound in ambulatory clinics for dyspnea evaluation has rarely been explored. We aimed to determine how lung ultrasound score (LUS) and inspiratory diaphragm excursion (DE) correlate with patient-reported dyspnea during a 6-min walk test (6MWT) in survivors of COVID-19 acute respiratory distress syndrome (ARDS). We hypothesize higher LUS and lower DE will correlate with dyspnea severity. STUDY DESIGN AND METHODS: Single-center cross-sectional study of survivors of critically ill COVID-19 pneumonia (requiring high-flow nasal cannula, invasive, or non-invasive mechanical ventilation) seen in our Post-ICU clinic. All patients underwent standardized scanning protocols to compute LUS and DE. Pearson correlations were performed to detect an association between LUS and DE with dyspnea at rest and exertion during 6MWT. RESULTS: We enrolled 45 patients. Average age was 61.5 years (57.7% male), with average BMI of 32.3 Higher LUS correlated significantly with dyspnea, at rest (r = + 0.41, p = < 0.01) and at exertion (r = + 0.40, p = < 0.01). Higher LUS correlated significantly with lower oxygen saturation during 6MWT (r = -0.55, p = < 0.01) and lower 6MWT distance (r = -0.44, p = < 0.01). DE correlated significantly with 6MWT distance but did not correlate with dyspnea at rest or exertion. CONCLUSION: Higher LUS correlated significantly with patient-reported dyspnea at rest and exertion. Higher LUS significantly correlated with more exertional oxygen desaturation during 6MWT and lower 6MWT distance. DE did not correlate with dyspnea.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Male , Middle Aged , Female , COVID-19/complications , Diaphragm/diagnostic imaging , Cross-Sectional Studies , Lung/diagnostic imaging , Respiratory Distress Syndrome/diagnostic imaging , Dyspnea/etiology , Ultrasonography/methods , Intensive Care Units , Survivors
2.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2240496

ABSTRACT

Background: Early in the pandemic, we established COVID-19 Recovery and Engagement (CORE) Clinics in the Bronx and implemented a detailed evaluation protocol to assess physical, emotional, and cognitive function, pulmonary function tests, and imaging for COVID-19 survivors. Here, we report our findings up to five months post-acute COVID-19. Methods: Main outcomes and measures included pulmonary function tests, imaging tests, and a battery of symptom, physical, emotional, and cognitive assessments 5 months post-acute COVID-19. Findings: Dyspnea, fatigue, decreased exercise tolerance, brain fog, and shortness of breath were the most common symptoms but there were generally no significant differences between hospitalized and non-hospitalized cohorts (p > 0.05). Many patients had abnormal physical, emotional, and cognitive scores, but most functioned independently; there were no significant differences between hospitalized and non-hospitalized cohorts (p > 0.05). Six-minute walk tests, lung ultrasound, and diaphragm excursion were abnormal but only in the hospitalized cohort. Pulmonary function tests showed moderately restrictive pulmonary function only in the hospitalized cohort but no obstructive pulmonary function. Newly detected major neurological events, microvascular disease, atrophy, and white-matter changes were rare, but lung opacity and fibrosis-like findings were common after acute COVID-19. Interpretation: Many COVID-19 survivors experienced moderately restrictive pulmonary function, and significant symptoms across the physical, emotional, and cognitive health domains. Newly detected brain imaging abnormalities were rare, but lung imaging abnormalities were common. This study provides insights into post-acute sequelae following SARS-CoV-2 infection in neurological and pulmonary systems which may be used to support at-risk patients and develop effective screening methods and interventions.

SELECTION OF CITATIONS
SEARCH DETAIL